This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of vector sum is sum of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjadj.3 | |- B e. ~H |
||
| Assertion | pjaddii | |- ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjadj.3 | |- B e. ~H |
|
| 4 | 1 2 | pjpji | |- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 5 | 1 3 | pjpji | |- B = ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) |
| 6 | 4 5 | oveq12i | |- ( A +h B ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) +h ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 7 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 8 | 1 | choccli | |- ( _|_ ` H ) e. CH |
| 9 | 8 2 | pjhclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 10 | 1 3 | pjhclii | |- ( ( projh ` H ) ` B ) e. ~H |
| 11 | 8 3 | pjhclii | |- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H |
| 12 | 7 9 10 11 | hvadd4i | |- ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) +h ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 13 | 6 12 | eqtri | |- ( A +h B ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 14 | 13 | fveq2i | |- ( ( projh ` H ) ` ( A +h B ) ) = ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) |
| 15 | 1 | chshii | |- H e. SH |
| 16 | 1 2 | pjclii | |- ( ( projh ` H ) ` A ) e. H |
| 17 | 1 3 | pjclii | |- ( ( projh ` H ) ` B ) e. H |
| 18 | shaddcl | |- ( ( H e. SH /\ ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` H ) ` B ) e. H ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H ) |
|
| 19 | 15 16 17 18 | mp3an | |- ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H |
| 20 | 8 | chshii | |- ( _|_ ` H ) e. SH |
| 21 | 8 2 | pjclii | |- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 22 | 8 3 | pjclii | |- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) |
| 23 | shaddcl | |- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) ) |
|
| 24 | 20 21 22 23 | mp3an | |- ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) |
| 25 | 1 | pjcompi | |- ( ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H /\ ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) ) |
| 26 | 19 24 25 | mp2an | |- ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |
| 27 | 14 26 | eqtri | |- ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |