This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. Lemma 3.1(S7) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his7 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih ( B +h C ) ) = ( ( A .ih B ) + ( A .ih C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his2 | |- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( ( B +h C ) .ih A ) = ( ( B .ih A ) + ( C .ih A ) ) ) |
|
| 2 | 1 | fveq2d | |- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( * ` ( ( B +h C ) .ih A ) ) = ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) ) |
| 3 | hicl | |- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) e. CC ) |
|
| 4 | hicl | |- ( ( C e. ~H /\ A e. ~H ) -> ( C .ih A ) e. CC ) |
|
| 5 | cjadd | |- ( ( ( B .ih A ) e. CC /\ ( C .ih A ) e. CC ) -> ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ( B e. ~H /\ A e. ~H ) /\ ( C e. ~H /\ A e. ~H ) ) -> ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 7 | 6 | 3impdir | |- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( * ` ( ( B .ih A ) + ( C .ih A ) ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 8 | 2 7 | eqtrd | |- ( ( B e. ~H /\ C e. ~H /\ A e. ~H ) -> ( * ` ( ( B +h C ) .ih A ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 9 | 8 | 3comr | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( * ` ( ( B +h C ) .ih A ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 10 | hvaddcl | |- ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) e. ~H ) |
|
| 11 | ax-his1 | |- ( ( A e. ~H /\ ( B +h C ) e. ~H ) -> ( A .ih ( B +h C ) ) = ( * ` ( ( B +h C ) .ih A ) ) ) |
|
| 12 | 10 11 | sylan2 | |- ( ( A e. ~H /\ ( B e. ~H /\ C e. ~H ) ) -> ( A .ih ( B +h C ) ) = ( * ` ( ( B +h C ) .ih A ) ) ) |
| 13 | 12 | 3impb | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih ( B +h C ) ) = ( * ` ( ( B +h C ) .ih A ) ) ) |
| 14 | ax-his1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |
|
| 15 | 14 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |
| 16 | ax-his1 | |- ( ( A e. ~H /\ C e. ~H ) -> ( A .ih C ) = ( * ` ( C .ih A ) ) ) |
|
| 17 | 16 | 3adant2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih C ) = ( * ` ( C .ih A ) ) ) |
| 18 | 15 17 | oveq12d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A .ih B ) + ( A .ih C ) ) = ( ( * ` ( B .ih A ) ) + ( * ` ( C .ih A ) ) ) ) |
| 19 | 9 13 18 | 3eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A .ih ( B +h C ) ) = ( ( A .ih B ) + ( A .ih C ) ) ) |