This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjorth.1 | |- A e. ~H |
|
| pjorth.2 | |- B e. ~H |
||
| Assertion | pjorthi | |- ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjorth.1 | |- A e. ~H |
|
| 2 | pjorth.2 | |- B e. ~H |
|
| 3 | chsh | |- ( H e. CH -> H e. SH ) |
|
| 4 | axpjcl | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. H ) |
|
| 5 | 1 4 | mpan2 | |- ( H e. CH -> ( ( projh ` H ) ` A ) e. H ) |
| 6 | choccl | |- ( H e. CH -> ( _|_ ` H ) e. CH ) |
|
| 7 | axpjcl | |- ( ( ( _|_ ` H ) e. CH /\ B e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) |
|
| 8 | 6 2 7 | sylancl | |- ( H e. CH -> ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) |
| 9 | 5 8 | jca | |- ( H e. CH -> ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) ) |
| 10 | shocorth | |- ( H e. SH -> ( ( ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) ) |
|
| 11 | 3 9 10 | sylc | |- ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) |