This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of vector sum is sum of projections. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | |- H e. CH |
|
| Assertion | pjaddi | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | |- H e. CH |
|
| 2 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` H ) ` ( A +h B ) ) = ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h B ) ) ) |
|
| 3 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` H ) ` A ) = ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) |
|
| 4 | 3 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` B ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) <-> ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h B ) ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` B ) ) ) ) |
| 6 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) |
|
| 7 | 6 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h B ) ) = ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ) |
| 8 | fveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( projh ` H ) ` B ) = ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
|
| 9 | 8 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` B ) ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h B ) ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` B ) ) <-> ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) ) |
| 11 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 12 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 13 | 1 11 12 | pjaddii | |- ( ( projh ` H ) ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) +h ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
| 14 | 5 10 13 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) ) |