This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of vector sum is sum of projections. (Contributed by NM, 14-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjaddi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) ) ) | |
| 3 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) |
| 6 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 8 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) = ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 11 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 12 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 13 | 1 11 12 | pjaddii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) +ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 14 | 5 10 13 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |