This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 2-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjadjt.1 | |- H e. CH |
|
| Assertion | pjinormi | |- ( A e. ~H -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjadjt.1 | |- H e. CH |
|
| 2 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` H ) ` A ) = ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) |
|
| 3 | id | |- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
|
| 4 | 2 3 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) ) |
| 5 | 2fveq3 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( ( projh ` H ) ` A ) ) = ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ) |
|
| 6 | 5 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) = ( ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) |
| 7 | 4 6 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <-> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) = ( ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) ) ) |
| 8 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 9 | 1 8 | pjinormii | |- ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) = ( ( normh ` ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) ^ 2 ) |
| 10 | 7 9 | dedth | |- ( A e. ~H -> ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |