This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Euler phi function (also called "Euler totient function"), which counts the number of integers less than n and coprime to it, see definition in ApostolNT p. 25. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-phi | |- phi = ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cphi | |- phi |
|
| 1 | vn | |- n |
|
| 2 | cn | |- NN |
|
| 3 | chash | |- # |
|
| 4 | vx | |- x |
|
| 5 | c1 | |- 1 |
|
| 6 | cfz | |- ... |
|
| 7 | 1 | cv | |- n |
| 8 | 5 7 6 | co | |- ( 1 ... n ) |
| 9 | 4 | cv | |- x |
| 10 | cgcd | |- gcd |
|
| 11 | 9 7 10 | co | |- ( x gcd n ) |
| 12 | 11 5 | wceq | |- ( x gcd n ) = 1 |
| 13 | 12 4 8 | crab | |- { x e. ( 1 ... n ) | ( x gcd n ) = 1 } |
| 14 | 13 3 | cfv | |- ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) |
| 15 | 1 2 14 | cmpt | |- ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) ) |
| 16 | 0 15 | wceq | |- phi = ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) ) |