This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpissubg.b | |- B = ( Base ` G ) |
|
| grpissubg.s | |- S = ( Base ` H ) |
||
| Assertion | grpissubg | |- ( ( G e. Grp /\ H e. Grp ) -> ( ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> S e. ( SubGrp ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpissubg.b | |- B = ( Base ` G ) |
|
| 2 | grpissubg.s | |- S = ( Base ` H ) |
|
| 3 | simpl | |- ( ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> S C_ B ) |
|
| 4 | 3 | adantl | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S C_ B ) |
| 5 | 2 | grpbn0 | |- ( H e. Grp -> S =/= (/) ) |
| 6 | 5 | ad2antlr | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S =/= (/) ) |
| 7 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 8 | mndmgm | |- ( G e. Mnd -> G e. Mgm ) |
|
| 9 | 7 8 | syl | |- ( G e. Grp -> G e. Mgm ) |
| 10 | grpmnd | |- ( H e. Grp -> H e. Mnd ) |
|
| 11 | mndmgm | |- ( H e. Mnd -> H e. Mgm ) |
|
| 12 | 10 11 | syl | |- ( H e. Grp -> H e. Mgm ) |
| 13 | 9 12 | anim12i | |- ( ( G e. Grp /\ H e. Grp ) -> ( G e. Mgm /\ H e. Mgm ) ) |
| 14 | 13 | adantr | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( G e. Mgm /\ H e. Mgm ) ) |
| 15 | 14 | ad2antrr | |- ( ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) /\ b e. S ) -> ( G e. Mgm /\ H e. Mgm ) ) |
| 16 | simpr | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) |
|
| 17 | 16 | ad2antrr | |- ( ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) /\ b e. S ) -> ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) |
| 18 | simpr | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) -> a e. S ) |
|
| 19 | 18 | anim1i | |- ( ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) /\ b e. S ) -> ( a e. S /\ b e. S ) ) |
| 20 | 1 2 | mgmsscl | |- ( ( ( G e. Mgm /\ H e. Mgm ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) /\ ( a e. S /\ b e. S ) ) -> ( a ( +g ` G ) b ) e. S ) |
| 21 | 15 17 19 20 | syl3anc | |- ( ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) /\ b e. S ) -> ( a ( +g ` G ) b ) e. S ) |
| 22 | 21 | ralrimiva | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) -> A. b e. S ( a ( +g ` G ) b ) e. S ) |
| 23 | simpl | |- ( ( G e. Grp /\ H e. Grp ) -> G e. Grp ) |
|
| 24 | 23 | adantr | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> G e. Grp ) |
| 25 | simplr | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> H e. Grp ) |
|
| 26 | 1 | sseq2i | |- ( S C_ B <-> S C_ ( Base ` G ) ) |
| 27 | 26 | biimpi | |- ( S C_ B -> S C_ ( Base ` G ) ) |
| 28 | 27 | adantr | |- ( ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> S C_ ( Base ` G ) ) |
| 29 | 28 | adantl | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S C_ ( Base ` G ) ) |
| 30 | ovres | |- ( ( x e. S /\ y e. S ) -> ( x ( ( +g ` G ) |` ( S X. S ) ) y ) = ( x ( +g ` G ) y ) ) |
|
| 31 | 30 | adantl | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x ( ( +g ` G ) |` ( S X. S ) ) y ) = ( x ( +g ` G ) y ) ) |
| 32 | oveq | |- ( ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) -> ( x ( +g ` H ) y ) = ( x ( ( +g ` G ) |` ( S X. S ) ) y ) ) |
|
| 33 | 32 | adantl | |- ( ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> ( x ( +g ` H ) y ) = ( x ( ( +g ` G ) |` ( S X. S ) ) y ) ) |
| 34 | 33 | eqcomd | |- ( ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> ( x ( ( +g ` G ) |` ( S X. S ) ) y ) = ( x ( +g ` H ) y ) ) |
| 35 | 34 | ad2antlr | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x ( ( +g ` G ) |` ( S X. S ) ) y ) = ( x ( +g ` H ) y ) ) |
| 36 | 31 35 | eqtr3d | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 37 | 36 | ralrimivva | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> A. x e. S A. y e. S ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 38 | 24 25 2 29 37 | grpinvssd | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( a e. S -> ( ( invg ` H ) ` a ) = ( ( invg ` G ) ` a ) ) ) |
| 39 | 38 | imp | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) -> ( ( invg ` H ) ` a ) = ( ( invg ` G ) ` a ) ) |
| 40 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 41 | 2 40 | grpinvcl | |- ( ( H e. Grp /\ a e. S ) -> ( ( invg ` H ) ` a ) e. S ) |
| 42 | 41 | ad4ant24 | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) -> ( ( invg ` H ) ` a ) e. S ) |
| 43 | 39 42 | eqeltrrd | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) -> ( ( invg ` G ) ` a ) e. S ) |
| 44 | 22 43 | jca | |- ( ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) /\ a e. S ) -> ( A. b e. S ( a ( +g ` G ) b ) e. S /\ ( ( invg ` G ) ` a ) e. S ) ) |
| 45 | 44 | ralrimiva | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> A. a e. S ( A. b e. S ( a ( +g ` G ) b ) e. S /\ ( ( invg ` G ) ` a ) e. S ) ) |
| 46 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 47 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 48 | 1 46 47 | issubg2 | |- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( S C_ B /\ S =/= (/) /\ A. a e. S ( A. b e. S ( a ( +g ` G ) b ) e. S /\ ( ( invg ` G ) ` a ) e. S ) ) ) ) |
| 49 | 48 | ad2antrr | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> ( S e. ( SubGrp ` G ) <-> ( S C_ B /\ S =/= (/) /\ A. a e. S ( A. b e. S ( a ( +g ` G ) b ) e. S /\ ( ( invg ` G ) ` a ) e. S ) ) ) ) |
| 50 | 4 6 45 49 | mpbir3and | |- ( ( ( G e. Grp /\ H e. Grp ) /\ ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) ) -> S e. ( SubGrp ` G ) ) |
| 51 | 50 | ex | |- ( ( G e. Grp /\ H e. Grp ) -> ( ( S C_ B /\ ( +g ` H ) = ( ( +g ` G ) |` ( S X. S ) ) ) -> S e. ( SubGrp ` G ) ) ) |