This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a p-group. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi.1 | |- X = ( Base ` G ) |
|
| Assertion | pgphash | |- ( ( P pGrp G /\ X e. Fin ) -> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi.1 | |- X = ( Base ` G ) |
|
| 2 | simpl | |- ( ( P pGrp G /\ X e. Fin ) -> P pGrp G ) |
|
| 3 | pgpgrp | |- ( P pGrp G -> G e. Grp ) |
|
| 4 | 1 | pgpfi2 | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
| 5 | 3 4 | sylan | |- ( ( P pGrp G /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
| 6 | 2 5 | mpbid | |- ( ( P pGrp G /\ X e. Fin ) -> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 7 | 6 | simprd | |- ( ( P pGrp G /\ X e. Fin ) -> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |