This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddssw.a | |- A = ( Atoms ` K ) |
|
| paddssw.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddssw2 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddssw.a | |- A = ( Atoms ` K ) |
|
| 2 | paddssw.p | |- .+ = ( +P ` K ) |
|
| 3 | 1 2 | sspadd1 | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> X C_ ( X .+ Y ) ) |
| 4 | 3 | 3adant3r3 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ ( X .+ Y ) ) |
| 5 | sstr | |- ( ( X C_ ( X .+ Y ) /\ ( X .+ Y ) C_ Z ) -> X C_ Z ) |
|
| 6 | 4 5 | sylan | |- ( ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ ( X .+ Y ) C_ Z ) -> X C_ Z ) |
| 7 | 6 | ex | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> X C_ Z ) ) |
| 8 | simpl | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> K e. B ) |
|
| 9 | simpr2 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ A ) |
|
| 10 | simpr1 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> X C_ A ) |
|
| 11 | 1 2 | sspadd2 | |- ( ( K e. B /\ Y C_ A /\ X C_ A ) -> Y C_ ( X .+ Y ) ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> Y C_ ( X .+ Y ) ) |
| 13 | sstr | |- ( ( Y C_ ( X .+ Y ) /\ ( X .+ Y ) C_ Z ) -> Y C_ Z ) |
|
| 14 | 12 13 | sylan | |- ( ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) /\ ( X .+ Y ) C_ Z ) -> Y C_ Z ) |
| 15 | 14 | ex | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> Y C_ Z ) ) |
| 16 | 7 15 | jcad | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |