This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the outer Lebesgue measure for subsets of the reals. Here f is a function from the positive integers to pairs <. a , b >. with a <_ b , and the outer volume of the set x is the infimum over all such functions such that the union of the open intervals ( a , b ) covers x of the sum of b - a . (Contributed by Mario Carneiro, 16-Mar-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ovol | |- vol* = ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | covol | |- vol* |
|
| 1 | vx | |- x |
|
| 2 | cr | |- RR |
|
| 3 | 2 | cpw | |- ~P RR |
| 4 | vy | |- y |
|
| 5 | cxr | |- RR* |
|
| 6 | vf | |- f |
|
| 7 | cle | |- <_ |
|
| 8 | 2 2 | cxp | |- ( RR X. RR ) |
| 9 | 7 8 | cin | |- ( <_ i^i ( RR X. RR ) ) |
| 10 | cmap | |- ^m |
|
| 11 | cn | |- NN |
|
| 12 | 9 11 10 | co | |- ( ( <_ i^i ( RR X. RR ) ) ^m NN ) |
| 13 | 1 | cv | |- x |
| 14 | cioo | |- (,) |
|
| 15 | 6 | cv | |- f |
| 16 | 14 15 | ccom | |- ( (,) o. f ) |
| 17 | 16 | crn | |- ran ( (,) o. f ) |
| 18 | 17 | cuni | |- U. ran ( (,) o. f ) |
| 19 | 13 18 | wss | |- x C_ U. ran ( (,) o. f ) |
| 20 | 4 | cv | |- y |
| 21 | c1 | |- 1 |
|
| 22 | caddc | |- + |
|
| 23 | cabs | |- abs |
|
| 24 | cmin | |- - |
|
| 25 | 23 24 | ccom | |- ( abs o. - ) |
| 26 | 25 15 | ccom | |- ( ( abs o. - ) o. f ) |
| 27 | 22 26 21 | cseq | |- seq 1 ( + , ( ( abs o. - ) o. f ) ) |
| 28 | 27 | crn | |- ran seq 1 ( + , ( ( abs o. - ) o. f ) ) |
| 29 | clt | |- < |
|
| 30 | 28 5 29 | csup | |- sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) |
| 31 | 20 30 | wceq | |- y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) |
| 32 | 19 31 | wa | |- ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
| 33 | 32 6 12 | wrex | |- E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) |
| 34 | 33 4 5 | crab | |- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
| 35 | 34 5 29 | cinf | |- inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) |
| 36 | 1 3 35 | cmpt | |- ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |
| 37 | 0 36 | wceq | |- vol* = ( x e. ~P RR |-> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( x C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } , RR* , < ) ) |