This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the values of the mapping are subsets of a class X , then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovmptss.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | ovmptss | |- ( A. x e. A A. y e. B C C_ X -> ( E F G ) C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmptss.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | mpomptsx | |- ( x e. A , y e. B |-> C ) = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
|
| 3 | 1 2 | eqtri | |- F = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 4 | 3 | fvmptss | |- ( A. z e. U_ x e. A ( { x } X. B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X -> ( F ` <. E , G >. ) C_ X ) |
| 5 | vex | |- u e. _V |
|
| 6 | vex | |- v e. _V |
|
| 7 | 5 6 | op1std | |- ( z = <. u , v >. -> ( 1st ` z ) = u ) |
| 8 | 7 | csbeq1d | |- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
| 9 | 5 6 | op2ndd | |- ( z = <. u , v >. -> ( 2nd ` z ) = v ) |
| 10 | 9 | csbeq1d | |- ( z = <. u , v >. -> [_ ( 2nd ` z ) / y ]_ C = [_ v / y ]_ C ) |
| 11 | 10 | csbeq2dv | |- ( z = <. u , v >. -> [_ u / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
| 12 | 8 11 | eqtrd | |- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
| 13 | 12 | sseq1d | |- ( z = <. u , v >. -> ( [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X <-> [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 14 | 13 | raliunxp | |- ( A. z e. U_ u e. A ( { u } X. [_ u / x ]_ B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X <-> A. u e. A A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) |
| 15 | nfcv | |- F/_ u ( { x } X. B ) |
|
| 16 | nfcv | |- F/_ x { u } |
|
| 17 | nfcsb1v | |- F/_ x [_ u / x ]_ B |
|
| 18 | 16 17 | nfxp | |- F/_ x ( { u } X. [_ u / x ]_ B ) |
| 19 | sneq | |- ( x = u -> { x } = { u } ) |
|
| 20 | csbeq1a | |- ( x = u -> B = [_ u / x ]_ B ) |
|
| 21 | 19 20 | xpeq12d | |- ( x = u -> ( { x } X. B ) = ( { u } X. [_ u / x ]_ B ) ) |
| 22 | 15 18 21 | cbviun | |- U_ x e. A ( { x } X. B ) = U_ u e. A ( { u } X. [_ u / x ]_ B ) |
| 23 | 22 | raleqi | |- ( A. z e. U_ x e. A ( { x } X. B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X <-> A. z e. U_ u e. A ( { u } X. [_ u / x ]_ B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X ) |
| 24 | nfv | |- F/ u A. y e. B C C_ X |
|
| 25 | nfcsb1v | |- F/_ x [_ u / x ]_ [_ v / y ]_ C |
|
| 26 | nfcv | |- F/_ x X |
|
| 27 | 25 26 | nfss | |- F/ x [_ u / x ]_ [_ v / y ]_ C C_ X |
| 28 | 17 27 | nfralw | |- F/ x A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X |
| 29 | nfv | |- F/ v C C_ X |
|
| 30 | nfcsb1v | |- F/_ y [_ v / y ]_ C |
|
| 31 | nfcv | |- F/_ y X |
|
| 32 | 30 31 | nfss | |- F/ y [_ v / y ]_ C C_ X |
| 33 | csbeq1a | |- ( y = v -> C = [_ v / y ]_ C ) |
|
| 34 | 33 | sseq1d | |- ( y = v -> ( C C_ X <-> [_ v / y ]_ C C_ X ) ) |
| 35 | 29 32 34 | cbvralw | |- ( A. y e. B C C_ X <-> A. v e. B [_ v / y ]_ C C_ X ) |
| 36 | csbeq1a | |- ( x = u -> [_ v / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
|
| 37 | 36 | sseq1d | |- ( x = u -> ( [_ v / y ]_ C C_ X <-> [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 38 | 20 37 | raleqbidv | |- ( x = u -> ( A. v e. B [_ v / y ]_ C C_ X <-> A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 39 | 35 38 | bitrid | |- ( x = u -> ( A. y e. B C C_ X <-> A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) ) |
| 40 | 24 28 39 | cbvralw | |- ( A. x e. A A. y e. B C C_ X <-> A. u e. A A. v e. [_ u / x ]_ B [_ u / x ]_ [_ v / y ]_ C C_ X ) |
| 41 | 14 23 40 | 3bitr4ri | |- ( A. x e. A A. y e. B C C_ X <-> A. z e. U_ x e. A ( { x } X. B ) [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C C_ X ) |
| 42 | df-ov | |- ( E F G ) = ( F ` <. E , G >. ) |
|
| 43 | 42 | sseq1i | |- ( ( E F G ) C_ X <-> ( F ` <. E , G >. ) C_ X ) |
| 44 | 4 41 43 | 3imtr4i | |- ( A. x e. A A. y e. B C C_ X -> ( E F G ) C_ X ) |