This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the values of the mapping are subsets of a class C , then so is any evaluation of the mapping, even if D is not in the base set A . (Contributed by Mario Carneiro, 13-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptrcl.1 | |- F = ( x e. A |-> B ) |
|
| Assertion | fvmptss | |- ( A. x e. A B C_ C -> ( F ` D ) C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrcl.1 | |- F = ( x e. A |-> B ) |
|
| 2 | 1 | dmmptss | |- dom F C_ A |
| 3 | 2 | sseli | |- ( D e. dom F -> D e. A ) |
| 4 | fveq2 | |- ( y = D -> ( F ` y ) = ( F ` D ) ) |
|
| 5 | 4 | sseq1d | |- ( y = D -> ( ( F ` y ) C_ C <-> ( F ` D ) C_ C ) ) |
| 6 | 5 | imbi2d | |- ( y = D -> ( ( A. x e. A B C_ C -> ( F ` y ) C_ C ) <-> ( A. x e. A B C_ C -> ( F ` D ) C_ C ) ) ) |
| 7 | nfcv | |- F/_ x y |
|
| 8 | nfra1 | |- F/ x A. x e. A B C_ C |
|
| 9 | nfmpt1 | |- F/_ x ( x e. A |-> B ) |
|
| 10 | 1 9 | nfcxfr | |- F/_ x F |
| 11 | 10 7 | nffv | |- F/_ x ( F ` y ) |
| 12 | nfcv | |- F/_ x C |
|
| 13 | 11 12 | nfss | |- F/ x ( F ` y ) C_ C |
| 14 | 8 13 | nfim | |- F/ x ( A. x e. A B C_ C -> ( F ` y ) C_ C ) |
| 15 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 16 | 15 | sseq1d | |- ( x = y -> ( ( F ` x ) C_ C <-> ( F ` y ) C_ C ) ) |
| 17 | 16 | imbi2d | |- ( x = y -> ( ( A. x e. A B C_ C -> ( F ` x ) C_ C ) <-> ( A. x e. A B C_ C -> ( F ` y ) C_ C ) ) ) |
| 18 | 1 | dmmpt | |- dom F = { x e. A | B e. _V } |
| 19 | 18 | reqabi | |- ( x e. dom F <-> ( x e. A /\ B e. _V ) ) |
| 20 | 1 | fvmpt2 | |- ( ( x e. A /\ B e. _V ) -> ( F ` x ) = B ) |
| 21 | eqimss | |- ( ( F ` x ) = B -> ( F ` x ) C_ B ) |
|
| 22 | 20 21 | syl | |- ( ( x e. A /\ B e. _V ) -> ( F ` x ) C_ B ) |
| 23 | 19 22 | sylbi | |- ( x e. dom F -> ( F ` x ) C_ B ) |
| 24 | ndmfv | |- ( -. x e. dom F -> ( F ` x ) = (/) ) |
|
| 25 | 0ss | |- (/) C_ B |
|
| 26 | 24 25 | eqsstrdi | |- ( -. x e. dom F -> ( F ` x ) C_ B ) |
| 27 | 23 26 | pm2.61i | |- ( F ` x ) C_ B |
| 28 | rsp | |- ( A. x e. A B C_ C -> ( x e. A -> B C_ C ) ) |
|
| 29 | 28 | impcom | |- ( ( x e. A /\ A. x e. A B C_ C ) -> B C_ C ) |
| 30 | 27 29 | sstrid | |- ( ( x e. A /\ A. x e. A B C_ C ) -> ( F ` x ) C_ C ) |
| 31 | 30 | ex | |- ( x e. A -> ( A. x e. A B C_ C -> ( F ` x ) C_ C ) ) |
| 32 | 7 14 17 31 | vtoclgaf | |- ( y e. A -> ( A. x e. A B C_ C -> ( F ` y ) C_ C ) ) |
| 33 | 6 32 | vtoclga | |- ( D e. A -> ( A. x e. A B C_ C -> ( F ` D ) C_ C ) ) |
| 34 | 33 | impcom | |- ( ( A. x e. A B C_ C /\ D e. A ) -> ( F ` D ) C_ C ) |
| 35 | 3 34 | sylan2 | |- ( ( A. x e. A B C_ C /\ D e. dom F ) -> ( F ` D ) C_ C ) |
| 36 | ndmfv | |- ( -. D e. dom F -> ( F ` D ) = (/) ) |
|
| 37 | 36 | adantl | |- ( ( A. x e. A B C_ C /\ -. D e. dom F ) -> ( F ` D ) = (/) ) |
| 38 | 0ss | |- (/) C_ C |
|
| 39 | 37 38 | eqsstrdi | |- ( ( A. x e. A B C_ C /\ -. D e. dom F ) -> ( F ` D ) C_ C ) |
| 40 | 35 39 | pm2.61dan | |- ( A. x e. A B C_ C -> ( F ` D ) C_ C ) |