This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | relmpoopab.1 | |- F = ( x e. A , y e. B |-> { <. z , w >. | ph } ) |
|
| Assertion | relmpoopab | |- Rel ( C F D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relmpoopab.1 | |- F = ( x e. A , y e. B |-> { <. z , w >. | ph } ) |
|
| 2 | relopabv | |- Rel { <. z , w >. | ph } |
|
| 3 | df-rel | |- ( Rel { <. z , w >. | ph } <-> { <. z , w >. | ph } C_ ( _V X. _V ) ) |
|
| 4 | 2 3 | mpbi | |- { <. z , w >. | ph } C_ ( _V X. _V ) |
| 5 | 4 | rgen2w | |- A. x e. A A. y e. B { <. z , w >. | ph } C_ ( _V X. _V ) |
| 6 | 1 | ovmptss | |- ( A. x e. A A. y e. B { <. z , w >. | ph } C_ ( _V X. _V ) -> ( C F D ) C_ ( _V X. _V ) ) |
| 7 | 5 6 | ax-mp | |- ( C F D ) C_ ( _V X. _V ) |
| 8 | df-rel | |- ( Rel ( C F D ) <-> ( C F D ) C_ ( _V X. _V ) ) |
|
| 9 | 7 8 | mpbir | |- Rel ( C F D ) |