This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcom | |- [_ A / x ]_ [_ B / y ]_ C = [_ B / y ]_ [_ A / x ]_ C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccom | |- ( [. A / x ]. [. B / y ]. z e. C <-> [. B / y ]. [. A / x ]. z e. C ) |
|
| 2 | sbcel2 | |- ( [. B / y ]. z e. C <-> z e. [_ B / y ]_ C ) |
|
| 3 | 2 | sbcbii | |- ( [. A / x ]. [. B / y ]. z e. C <-> [. A / x ]. z e. [_ B / y ]_ C ) |
| 4 | sbcel2 | |- ( [. A / x ]. z e. C <-> z e. [_ A / x ]_ C ) |
|
| 5 | 4 | sbcbii | |- ( [. B / y ]. [. A / x ]. z e. C <-> [. B / y ]. z e. [_ A / x ]_ C ) |
| 6 | 1 3 5 | 3bitr3i | |- ( [. A / x ]. z e. [_ B / y ]_ C <-> [. B / y ]. z e. [_ A / x ]_ C ) |
| 7 | sbcel2 | |- ( [. A / x ]. z e. [_ B / y ]_ C <-> z e. [_ A / x ]_ [_ B / y ]_ C ) |
|
| 8 | sbcel2 | |- ( [. B / y ]. z e. [_ A / x ]_ C <-> z e. [_ B / y ]_ [_ A / x ]_ C ) |
|
| 9 | 6 7 8 | 3bitr3i | |- ( z e. [_ A / x ]_ [_ B / y ]_ C <-> z e. [_ B / y ]_ [_ A / x ]_ C ) |
| 10 | 9 | eqriv | |- [_ A / x ]_ [_ B / y ]_ C = [_ B / y ]_ [_ A / x ]_ C |