This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovima0 | |- ( ( X e. A /\ Y e. B ) -> ( X R Y ) e. ( ( R " ( A X. B ) ) u. { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( X e. A /\ Y e. B ) /\ ( X R Y ) = (/) ) -> ( X R Y ) = (/) ) |
|
| 2 | ssun2 | |- { (/) } C_ ( ( R " ( A X. B ) ) u. { (/) } ) |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 3 | snid | |- (/) e. { (/) } |
| 5 | 2 4 | sselii | |- (/) e. ( ( R " ( A X. B ) ) u. { (/) } ) |
| 6 | 1 5 | eqeltrdi | |- ( ( ( X e. A /\ Y e. B ) /\ ( X R Y ) = (/) ) -> ( X R Y ) e. ( ( R " ( A X. B ) ) u. { (/) } ) ) |
| 7 | ssun1 | |- ( R " ( A X. B ) ) C_ ( ( R " ( A X. B ) ) u. { (/) } ) |
|
| 8 | df-ov | |- ( X R Y ) = ( R ` <. X , Y >. ) |
|
| 9 | opelxpi | |- ( ( X e. A /\ Y e. B ) -> <. X , Y >. e. ( A X. B ) ) |
|
| 10 | 8 | eqeq1i | |- ( ( X R Y ) = (/) <-> ( R ` <. X , Y >. ) = (/) ) |
| 11 | 10 | notbii | |- ( -. ( X R Y ) = (/) <-> -. ( R ` <. X , Y >. ) = (/) ) |
| 12 | 11 | biimpi | |- ( -. ( X R Y ) = (/) -> -. ( R ` <. X , Y >. ) = (/) ) |
| 13 | eliman0 | |- ( ( <. X , Y >. e. ( A X. B ) /\ -. ( R ` <. X , Y >. ) = (/) ) -> ( R ` <. X , Y >. ) e. ( R " ( A X. B ) ) ) |
|
| 14 | 9 12 13 | syl2an | |- ( ( ( X e. A /\ Y e. B ) /\ -. ( X R Y ) = (/) ) -> ( R ` <. X , Y >. ) e. ( R " ( A X. B ) ) ) |
| 15 | 8 14 | eqeltrid | |- ( ( ( X e. A /\ Y e. B ) /\ -. ( X R Y ) = (/) ) -> ( X R Y ) e. ( R " ( A X. B ) ) ) |
| 16 | 7 15 | sselid | |- ( ( ( X e. A /\ Y e. B ) /\ -. ( X R Y ) = (/) ) -> ( X R Y ) e. ( ( R " ( A X. B ) ) u. { (/) } ) ) |
| 17 | 6 16 | pm2.61dan | |- ( ( X e. A /\ Y e. B ) -> ( X R Y ) e. ( ( R " ( A X. B ) ) u. { (/) } ) ) |