This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shincl | |- ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | |- ( A = if ( A e. SH , A , ~H ) -> ( A i^i B ) = ( if ( A e. SH , A , ~H ) i^i B ) ) |
|
| 2 | 1 | eleq1d | |- ( A = if ( A e. SH , A , ~H ) -> ( ( A i^i B ) e. SH <-> ( if ( A e. SH , A , ~H ) i^i B ) e. SH ) ) |
| 3 | ineq2 | |- ( B = if ( B e. SH , B , ~H ) -> ( if ( A e. SH , A , ~H ) i^i B ) = ( if ( A e. SH , A , ~H ) i^i if ( B e. SH , B , ~H ) ) ) |
|
| 4 | 3 | eleq1d | |- ( B = if ( B e. SH , B , ~H ) -> ( ( if ( A e. SH , A , ~H ) i^i B ) e. SH <-> ( if ( A e. SH , A , ~H ) i^i if ( B e. SH , B , ~H ) ) e. SH ) ) |
| 5 | helsh | |- ~H e. SH |
|
| 6 | 5 | elimel | |- if ( A e. SH , A , ~H ) e. SH |
| 7 | 5 | elimel | |- if ( B e. SH , B , ~H ) e. SH |
| 8 | 6 7 | shincli | |- ( if ( A e. SH , A , ~H ) i^i if ( B e. SH , B , ~H ) ) e. SH |
| 9 | 2 4 8 | dedth2h | |- ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH ) |