This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upward ray [ P , +oo ) is closed. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | |- X = dom R |
|
| Assertion | ordtcld2 | |- ( ( R e. V /\ P e. X ) -> { x e. X | P R x } e. ( Clsd ` ( ordTop ` R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | |- X = dom R |
|
| 2 | ssrab2 | |- { x e. X | P R x } C_ X |
|
| 3 | 1 | ordttopon | |- ( R e. V -> ( ordTop ` R ) e. ( TopOn ` X ) ) |
| 4 | 3 | adantr | |- ( ( R e. V /\ P e. X ) -> ( ordTop ` R ) e. ( TopOn ` X ) ) |
| 5 | toponuni | |- ( ( ordTop ` R ) e. ( TopOn ` X ) -> X = U. ( ordTop ` R ) ) |
|
| 6 | 4 5 | syl | |- ( ( R e. V /\ P e. X ) -> X = U. ( ordTop ` R ) ) |
| 7 | 2 6 | sseqtrid | |- ( ( R e. V /\ P e. X ) -> { x e. X | P R x } C_ U. ( ordTop ` R ) ) |
| 8 | notrab | |- ( X \ { x e. X | P R x } ) = { x e. X | -. P R x } |
|
| 9 | 6 | difeq1d | |- ( ( R e. V /\ P e. X ) -> ( X \ { x e. X | P R x } ) = ( U. ( ordTop ` R ) \ { x e. X | P R x } ) ) |
| 10 | 8 9 | eqtr3id | |- ( ( R e. V /\ P e. X ) -> { x e. X | -. P R x } = ( U. ( ordTop ` R ) \ { x e. X | P R x } ) ) |
| 11 | 1 | ordtopn2 | |- ( ( R e. V /\ P e. X ) -> { x e. X | -. P R x } e. ( ordTop ` R ) ) |
| 12 | 10 11 | eqeltrrd | |- ( ( R e. V /\ P e. X ) -> ( U. ( ordTop ` R ) \ { x e. X | P R x } ) e. ( ordTop ` R ) ) |
| 13 | topontop | |- ( ( ordTop ` R ) e. ( TopOn ` X ) -> ( ordTop ` R ) e. Top ) |
|
| 14 | eqid | |- U. ( ordTop ` R ) = U. ( ordTop ` R ) |
|
| 15 | 14 | iscld | |- ( ( ordTop ` R ) e. Top -> ( { x e. X | P R x } e. ( Clsd ` ( ordTop ` R ) ) <-> ( { x e. X | P R x } C_ U. ( ordTop ` R ) /\ ( U. ( ordTop ` R ) \ { x e. X | P R x } ) e. ( ordTop ` R ) ) ) ) |
| 16 | 4 13 15 | 3syl | |- ( ( R e. V /\ P e. X ) -> ( { x e. X | P R x } e. ( Clsd ` ( ordTop ` R ) ) <-> ( { x e. X | P R x } C_ U. ( ordTop ` R ) /\ ( U. ( ordTop ` R ) \ { x e. X | P R x } ) e. ( ordTop ` R ) ) ) ) |
| 17 | 7 12 16 | mpbir2and | |- ( ( R e. V /\ P e. X ) -> { x e. X | P R x } e. ( Clsd ` ( ordTop ` R ) ) ) |