This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suctr | |- ( Tr A -> Tr suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuci | |- ( y e. suc A -> ( y e. A \/ y = A ) ) |
|
| 2 | trel | |- ( Tr A -> ( ( z e. y /\ y e. A ) -> z e. A ) ) |
|
| 3 | 2 | expdimp | |- ( ( Tr A /\ z e. y ) -> ( y e. A -> z e. A ) ) |
| 4 | eleq2 | |- ( y = A -> ( z e. y <-> z e. A ) ) |
|
| 5 | 4 | biimpcd | |- ( z e. y -> ( y = A -> z e. A ) ) |
| 6 | 5 | adantl | |- ( ( Tr A /\ z e. y ) -> ( y = A -> z e. A ) ) |
| 7 | 3 6 | jaod | |- ( ( Tr A /\ z e. y ) -> ( ( y e. A \/ y = A ) -> z e. A ) ) |
| 8 | 1 7 | syl5 | |- ( ( Tr A /\ z e. y ) -> ( y e. suc A -> z e. A ) ) |
| 9 | 8 | expimpd | |- ( Tr A -> ( ( z e. y /\ y e. suc A ) -> z e. A ) ) |
| 10 | elelsuc | |- ( z e. A -> z e. suc A ) |
|
| 11 | 9 10 | syl6 | |- ( Tr A -> ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
| 12 | 11 | alrimivv | |- ( Tr A -> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
| 13 | dftr2 | |- ( Tr suc A <-> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
|
| 14 | 12 13 | sylibr | |- ( Tr A -> Tr suc A ) |