This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrval2.s | |- S = ( I mPwSer R ) |
|
| opsrval2.o | |- O = ( ( I ordPwSer R ) ` T ) |
||
| opsrval2.l | |- .<_ = ( le ` O ) |
||
| opsrval2.i | |- ( ph -> I e. V ) |
||
| opsrval2.r | |- ( ph -> R e. W ) |
||
| opsrval2.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| Assertion | opsrval2 | |- ( ph -> O = ( S sSet <. ( le ` ndx ) , .<_ >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrval2.s | |- S = ( I mPwSer R ) |
|
| 2 | opsrval2.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 3 | opsrval2.l | |- .<_ = ( le ` O ) |
|
| 4 | opsrval2.i | |- ( ph -> I e. V ) |
|
| 5 | opsrval2.r | |- ( ph -> R e. W ) |
|
| 6 | opsrval2.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 7 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 8 | eqid | |- ( lt ` R ) = ( lt ` R ) |
|
| 9 | eqid | |- ( T |
|
| 10 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 11 | eqid | |- { <. x , y >. | ( { x , y } C_ ( Base ` S ) /\ ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T |
|
| 12 | 1 2 7 8 9 10 11 4 5 6 | opsrval | |- ( ph -> O = ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` S ) /\ ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T |
| 13 | 1 2 7 8 9 10 3 6 | opsrle | |- ( ph -> .<_ = { <. x , y >. | ( { x , y } C_ ( Base ` S ) /\ ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T |
| 14 | 13 | opeq2d | |- ( ph -> <. ( le ` ndx ) , .<_ >. = <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` S ) /\ ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T |
| 15 | 14 | oveq2d | |- ( ph -> ( S sSet <. ( le ` ndx ) , .<_ >. ) = ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` S ) /\ ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T |
| 16 | 12 15 | eqtr4d | |- ( ph -> O = ( S sSet <. ( le ` ndx ) , .<_ >. ) ) |