This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | |- B = ( Base ` R ) |
|
| opprval.2 | |- .x. = ( .r ` R ) |
||
| opprval.3 | |- O = ( oppR ` R ) |
||
| opprmulfval.4 | |- .xb = ( .r ` O ) |
||
| Assertion | opprmulfval | |- .xb = tpos .x. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | |- B = ( Base ` R ) |
|
| 2 | opprval.2 | |- .x. = ( .r ` R ) |
|
| 3 | opprval.3 | |- O = ( oppR ` R ) |
|
| 4 | opprmulfval.4 | |- .xb = ( .r ` O ) |
|
| 5 | 1 2 3 | opprval | |- O = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) |
| 6 | 5 | fveq2i | |- ( .r ` O ) = ( .r ` ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) ) |
| 7 | 2 | fvexi | |- .x. e. _V |
| 8 | 7 | tposex | |- tpos .x. e. _V |
| 9 | mulridx | |- .r = Slot ( .r ` ndx ) |
|
| 10 | 9 | setsid | |- ( ( R e. _V /\ tpos .x. e. _V ) -> tpos .x. = ( .r ` ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) ) ) |
| 11 | 8 10 | mpan2 | |- ( R e. _V -> tpos .x. = ( .r ` ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) ) ) |
| 12 | 6 11 | eqtr4id | |- ( R e. _V -> ( .r ` O ) = tpos .x. ) |
| 13 | tpos0 | |- tpos (/) = (/) |
|
| 14 | 9 | str0 | |- (/) = ( .r ` (/) ) |
| 15 | 13 14 | eqtr2i | |- ( .r ` (/) ) = tpos (/) |
| 16 | fvprc | |- ( -. R e. _V -> ( oppR ` R ) = (/) ) |
|
| 17 | 3 16 | eqtrid | |- ( -. R e. _V -> O = (/) ) |
| 18 | 17 | fveq2d | |- ( -. R e. _V -> ( .r ` O ) = ( .r ` (/) ) ) |
| 19 | fvprc | |- ( -. R e. _V -> ( .r ` R ) = (/) ) |
|
| 20 | 2 19 | eqtrid | |- ( -. R e. _V -> .x. = (/) ) |
| 21 | 20 | tposeqd | |- ( -. R e. _V -> tpos .x. = tpos (/) ) |
| 22 | 15 18 21 | 3eqtr4a | |- ( -. R e. _V -> ( .r ` O ) = tpos .x. ) |
| 23 | 12 22 | pm2.61i | |- ( .r ` O ) = tpos .x. |
| 24 | 4 23 | eqtri | |- .xb = tpos .x. |