This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | |- B = ( Base ` R ) |
|
| opprval.2 | |- .x. = ( .r ` R ) |
||
| opprval.3 | |- O = ( oppR ` R ) |
||
| Assertion | opprval | |- O = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | |- B = ( Base ` R ) |
|
| 2 | opprval.2 | |- .x. = ( .r ` R ) |
|
| 3 | opprval.3 | |- O = ( oppR ` R ) |
|
| 4 | id | |- ( x = R -> x = R ) |
|
| 5 | fveq2 | |- ( x = R -> ( .r ` x ) = ( .r ` R ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( x = R -> ( .r ` x ) = .x. ) |
| 7 | 6 | tposeqd | |- ( x = R -> tpos ( .r ` x ) = tpos .x. ) |
| 8 | 7 | opeq2d | |- ( x = R -> <. ( .r ` ndx ) , tpos ( .r ` x ) >. = <. ( .r ` ndx ) , tpos .x. >. ) |
| 9 | 4 8 | oveq12d | |- ( x = R -> ( x sSet <. ( .r ` ndx ) , tpos ( .r ` x ) >. ) = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) ) |
| 10 | df-oppr | |- oppR = ( x e. _V |-> ( x sSet <. ( .r ` ndx ) , tpos ( .r ` x ) >. ) ) |
|
| 11 | ovex | |- ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) e. _V |
|
| 12 | 9 10 11 | fvmpt | |- ( R e. _V -> ( oppR ` R ) = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) ) |
| 13 | fvprc | |- ( -. R e. _V -> ( oppR ` R ) = (/) ) |
|
| 14 | reldmsets | |- Rel dom sSet |
|
| 15 | 14 | ovprc1 | |- ( -. R e. _V -> ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) = (/) ) |
| 16 | 13 15 | eqtr4d | |- ( -. R e. _V -> ( oppR ` R ) = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) ) |
| 17 | 12 16 | pm2.61i | |- ( oppR ` R ) = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) |
| 18 | 3 17 | eqtri | |- O = ( R sSet <. ( .r ` ndx ) , tpos .x. >. ) |