This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppggic.o | |- O = ( oppG ` G ) |
|
| oppgcntr.z | |- Z = ( Cntr ` G ) |
||
| Assertion | oppgcntr | |- Z = ( Cntr ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppggic.o | |- O = ( oppG ` G ) |
|
| 2 | oppgcntr.z | |- Z = ( Cntr ` G ) |
|
| 3 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 4 | 1 3 | oppgcntz | |- ( ( Cntz ` G ) ` ( Base ` G ) ) = ( ( Cntz ` O ) ` ( Base ` G ) ) |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 3 | cntrval | |- ( ( Cntz ` G ) ` ( Base ` G ) ) = ( Cntr ` G ) |
| 7 | 6 2 | eqtr4i | |- ( ( Cntz ` G ) ` ( Base ` G ) ) = Z |
| 8 | 1 5 | oppgbas | |- ( Base ` G ) = ( Base ` O ) |
| 9 | eqid | |- ( Cntz ` O ) = ( Cntz ` O ) |
|
| 10 | 8 9 | cntrval | |- ( ( Cntz ` O ) ` ( Base ` G ) ) = ( Cntr ` O ) |
| 11 | 4 7 10 | 3eqtr3i | |- Z = ( Cntr ` O ) |