This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfdiag.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppfdiag.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| oppfdiag.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | ||
| oppfdiag.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| oppfdiag.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| oppfdiag1a.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| oppfdiag1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| Assertion | oppfdiag1a | ⊢ ( 𝜑 → ( oppFunc ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfdiag.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppfdiag.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | oppfdiag.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 4 | oppfdiag.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | oppfdiag.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 6 | oppfdiag1a.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 7 | oppfdiag1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 9 | 3 4 5 6 7 8 | diag1cl | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 10 | 9 | fvresd | ⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( oppFunc ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 11 | eqidd | ⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ) | |
| 12 | 1 2 3 4 5 11 6 7 | oppfdiag1 | ⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) |
| 13 | 10 12 | eqtr3d | ⊢ ( 𝜑 → ( oppFunc ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) |