This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 14-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppchom.h | |- H = ( Hom ` C ) |
|
| oppchom.o | |- O = ( oppCat ` C ) |
||
| Assertion | oppchomfval | |- tpos H = ( Hom ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchom.h | |- H = ( Hom ` C ) |
|
| 2 | oppchom.o | |- O = ( oppCat ` C ) |
|
| 3 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 4 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 5 | 4 | simp3i | |- ( Hom ` ndx ) =/= ( comp ` ndx ) |
| 6 | 3 5 | setsnid | |- ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 7 | 1 | fvexi | |- H e. _V |
| 8 | 7 | tposex | |- tpos H e. _V |
| 9 | 3 | setsid | |- ( ( C e. _V /\ tpos H e. _V ) -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) |
| 10 | 8 9 | mpan2 | |- ( C e. _V -> tpos H = ( Hom ` ( C sSet <. ( Hom ` ndx ) , tpos H >. ) ) ) |
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 13 | 11 1 12 2 | oppcval | |- ( C e. _V -> O = ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) |
| 14 | 13 | fveq2d | |- ( C e. _V -> ( Hom ` O ) = ( Hom ` ( ( C sSet <. ( Hom ` ndx ) , tpos H >. ) sSet <. ( comp ` ndx ) , ( u e. ( ( Base ` C ) X. ( Base ` C ) ) , z e. ( Base ` C ) |-> tpos ( <. z , ( 2nd ` u ) >. ( comp ` C ) ( 1st ` u ) ) ) >. ) ) ) |
| 15 | 6 10 14 | 3eqtr4a | |- ( C e. _V -> tpos H = ( Hom ` O ) ) |
| 16 | tpos0 | |- tpos (/) = (/) |
|
| 17 | fvprc | |- ( -. C e. _V -> ( Hom ` C ) = (/) ) |
|
| 18 | 1 17 | eqtrid | |- ( -. C e. _V -> H = (/) ) |
| 19 | 18 | tposeqd | |- ( -. C e. _V -> tpos H = tpos (/) ) |
| 20 | fvprc | |- ( -. C e. _V -> ( oppCat ` C ) = (/) ) |
|
| 21 | 2 20 | eqtrid | |- ( -. C e. _V -> O = (/) ) |
| 22 | 21 | fveq2d | |- ( -. C e. _V -> ( Hom ` O ) = ( Hom ` (/) ) ) |
| 23 | 3 | str0 | |- (/) = ( Hom ` (/) ) |
| 24 | 22 23 | eqtr4di | |- ( -. C e. _V -> ( Hom ` O ) = (/) ) |
| 25 | 16 19 24 | 3eqtr4a | |- ( -. C e. _V -> tpos H = ( Hom ` O ) ) |
| 26 | 15 25 | pm2.61i | |- tpos H = ( Hom ` O ) |