This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 14-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| oppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| Assertion | oppchomfval | ⊢ tpos 𝐻 = ( Hom ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 2 | oppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 3 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 4 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 5 | 4 | simp3i | ⊢ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) |
| 6 | 3 5 | setsnid | ⊢ ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) = ( Hom ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 7 | 1 | fvexi | ⊢ 𝐻 ∈ V |
| 8 | 7 | tposex | ⊢ tpos 𝐻 ∈ V |
| 9 | 3 | setsid | ⊢ ( ( 𝐶 ∈ V ∧ tpos 𝐻 ∈ V ) → tpos 𝐻 = ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) ) |
| 10 | 8 9 | mpan2 | ⊢ ( 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 13 | 11 1 12 2 | oppcval | ⊢ ( 𝐶 ∈ V → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ( Hom ‘ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝐶 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) ) |
| 15 | 6 10 14 | 3eqtr4a | ⊢ ( 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ 𝑂 ) ) |
| 16 | tpos0 | ⊢ tpos ∅ = ∅ | |
| 17 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝐶 ) = ∅ ) | |
| 18 | 1 17 | eqtrid | ⊢ ( ¬ 𝐶 ∈ V → 𝐻 = ∅ ) |
| 19 | 18 | tposeqd | ⊢ ( ¬ 𝐶 ∈ V → tpos 𝐻 = tpos ∅ ) |
| 20 | fvprc | ⊢ ( ¬ 𝐶 ∈ V → ( oppCat ‘ 𝐶 ) = ∅ ) | |
| 21 | 2 20 | eqtrid | ⊢ ( ¬ 𝐶 ∈ V → 𝑂 = ∅ ) |
| 22 | 21 | fveq2d | ⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ( Hom ‘ ∅ ) ) |
| 23 | 3 | str0 | ⊢ ∅ = ( Hom ‘ ∅ ) |
| 24 | 22 23 | eqtr4di | ⊢ ( ¬ 𝐶 ∈ V → ( Hom ‘ 𝑂 ) = ∅ ) |
| 25 | 16 19 24 | 3eqtr4a | ⊢ ( ¬ 𝐶 ∈ V → tpos 𝐻 = ( Hom ‘ 𝑂 ) ) |
| 26 | 15 25 | pm2.61i | ⊢ tpos 𝐻 = ( Hom ‘ 𝑂 ) |