This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homffval.f | |- F = ( Homf ` C ) |
|
| homffval.b | |- B = ( Base ` C ) |
||
| homffval.h | |- H = ( Hom ` C ) |
||
| Assertion | homffval | |- F = ( x e. B , y e. B |-> ( x H y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | |- F = ( Homf ` C ) |
|
| 2 | homffval.b | |- B = ( Base ` C ) |
|
| 3 | homffval.h | |- H = ( Hom ` C ) |
|
| 4 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 5 | 4 2 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 6 | fveq2 | |- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
|
| 7 | 6 3 | eqtr4di | |- ( c = C -> ( Hom ` c ) = H ) |
| 8 | 7 | oveqd | |- ( c = C -> ( x ( Hom ` c ) y ) = ( x H y ) ) |
| 9 | 5 5 8 | mpoeq123dv | |- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
| 10 | df-homf | |- Homf = ( c e. _V |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( x ( Hom ` c ) y ) ) ) |
|
| 11 | 2 | fvexi | |- B e. _V |
| 12 | 11 11 | mpoex | |- ( x e. B , y e. B |-> ( x H y ) ) e. _V |
| 13 | 9 10 12 | fvmpt | |- ( C e. _V -> ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
| 14 | fvprc | |- ( -. C e. _V -> ( Homf ` C ) = (/) ) |
|
| 15 | fvprc | |- ( -. C e. _V -> ( Base ` C ) = (/) ) |
|
| 16 | 2 15 | eqtrid | |- ( -. C e. _V -> B = (/) ) |
| 17 | 16 | olcd | |- ( -. C e. _V -> ( B = (/) \/ B = (/) ) ) |
| 18 | 0mpo0 | |- ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x H y ) ) = (/) ) |
|
| 19 | 17 18 | syl | |- ( -. C e. _V -> ( x e. B , y e. B |-> ( x H y ) ) = (/) ) |
| 20 | 14 19 | eqtr4d | |- ( -. C e. _V -> ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
| 21 | 13 20 | pm2.61i | |- ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) |
| 22 | 1 21 | eqtri | |- F = ( x e. B , y e. B |-> ( x H y ) ) |