This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppccic.o | |- O = ( oppCat ` C ) |
|
| oppccic.i | |- ( ph -> R ( ~=c ` C ) S ) |
||
| Assertion | oppccic | |- ( ph -> R ( ~=c ` O ) S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppccic.o | |- O = ( oppCat ` C ) |
|
| 2 | oppccic.i | |- ( ph -> R ( ~=c ` C ) S ) |
|
| 3 | cicrcl2 | |- ( R ( ~=c ` C ) S -> C e. Cat ) |
|
| 4 | 2 3 | syl | |- ( ph -> C e. Cat ) |
| 5 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 6 | 4 5 | syl | |- ( ph -> O e. Cat ) |
| 7 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 8 | cicrcl | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) |
|
| 9 | 4 2 8 | syl2anc | |- ( ph -> S e. ( Base ` C ) ) |
| 10 | ciclcl | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) |
|
| 11 | 4 2 10 | syl2anc | |- ( ph -> R e. ( Base ` C ) ) |
| 12 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 13 | eqid | |- ( Iso ` O ) = ( Iso ` O ) |
|
| 14 | 7 1 4 9 11 12 13 | oppciso | |- ( ph -> ( S ( Iso ` O ) R ) = ( R ( Iso ` C ) S ) ) |
| 15 | 14 | neeq1d | |- ( ph -> ( ( S ( Iso ` O ) R ) =/= (/) <-> ( R ( Iso ` C ) S ) =/= (/) ) ) |
| 16 | 1 7 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 17 | 13 16 6 9 11 | brcic | |- ( ph -> ( S ( ~=c ` O ) R <-> ( S ( Iso ` O ) R ) =/= (/) ) ) |
| 18 | 12 7 4 11 9 | brcic | |- ( ph -> ( R ( ~=c ` C ) S <-> ( R ( Iso ` C ) S ) =/= (/) ) ) |
| 19 | 15 17 18 | 3bitr4rd | |- ( ph -> ( R ( ~=c ` C ) S <-> S ( ~=c ` O ) R ) ) |
| 20 | 2 19 | mpbid | |- ( ph -> S ( ~=c ` O ) R ) |
| 21 | cicsym | |- ( ( O e. Cat /\ S ( ~=c ` O ) R ) -> R ( ~=c ` O ) S ) |
|
| 22 | 6 20 21 | syl2anc | |- ( ph -> R ( ~=c ` O ) S ) |