This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cic.i | |- I = ( Iso ` C ) |
|
| cic.b | |- B = ( Base ` C ) |
||
| cic.c | |- ( ph -> C e. Cat ) |
||
| cic.x | |- ( ph -> X e. B ) |
||
| cic.y | |- ( ph -> Y e. B ) |
||
| Assertion | brcic | |- ( ph -> ( X ( ~=c ` C ) Y <-> ( X I Y ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.i | |- I = ( Iso ` C ) |
|
| 2 | cic.b | |- B = ( Base ` C ) |
|
| 3 | cic.c | |- ( ph -> C e. Cat ) |
|
| 4 | cic.x | |- ( ph -> X e. B ) |
|
| 5 | cic.y | |- ( ph -> Y e. B ) |
|
| 6 | cicfval | |- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |
|
| 7 | 3 6 | syl | |- ( ph -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |
| 8 | 7 | breqd | |- ( ph -> ( X ( ~=c ` C ) Y <-> X ( ( Iso ` C ) supp (/) ) Y ) ) |
| 9 | df-br | |- ( X ( ( Iso ` C ) supp (/) ) Y <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) |
|
| 10 | 9 | a1i | |- ( ph -> ( X ( ( Iso ` C ) supp (/) ) Y <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) ) |
| 11 | 1 | a1i | |- ( ph -> I = ( Iso ` C ) ) |
| 12 | 11 | fveq1d | |- ( ph -> ( I ` <. X , Y >. ) = ( ( Iso ` C ) ` <. X , Y >. ) ) |
| 13 | 12 | neeq1d | |- ( ph -> ( ( I ` <. X , Y >. ) =/= (/) <-> ( ( Iso ` C ) ` <. X , Y >. ) =/= (/) ) ) |
| 14 | df-ov | |- ( X I Y ) = ( I ` <. X , Y >. ) |
|
| 15 | 14 | eqcomi | |- ( I ` <. X , Y >. ) = ( X I Y ) |
| 16 | 15 | a1i | |- ( ph -> ( I ` <. X , Y >. ) = ( X I Y ) ) |
| 17 | 16 | neeq1d | |- ( ph -> ( ( I ` <. X , Y >. ) =/= (/) <-> ( X I Y ) =/= (/) ) ) |
| 18 | fvexd | |- ( ph -> ( Base ` C ) e. _V ) |
|
| 19 | 18 18 | xpexd | |- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) e. _V ) |
| 20 | 4 2 | eleqtrdi | |- ( ph -> X e. ( Base ` C ) ) |
| 21 | 5 2 | eleqtrdi | |- ( ph -> Y e. ( Base ` C ) ) |
| 22 | 20 21 | opelxpd | |- ( ph -> <. X , Y >. e. ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 23 | isofn | |- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
|
| 24 | 3 23 | syl | |- ( ph -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 25 | fvn0elsuppb | |- ( ( ( ( Base ` C ) X. ( Base ` C ) ) e. _V /\ <. X , Y >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) -> ( ( ( Iso ` C ) ` <. X , Y >. ) =/= (/) <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) ) |
|
| 26 | 19 22 24 25 | syl3anc | |- ( ph -> ( ( ( Iso ` C ) ` <. X , Y >. ) =/= (/) <-> <. X , Y >. e. ( ( Iso ` C ) supp (/) ) ) ) |
| 27 | 13 17 26 | 3bitr3rd | |- ( ph -> ( <. X , Y >. e. ( ( Iso ` C ) supp (/) ) <-> ( X I Y ) =/= (/) ) ) |
| 28 | 8 10 27 | 3bitrd | |- ( ph -> ( X ( ~=c ` C ) Y <-> ( X I Y ) =/= (/) ) ) |