This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopab uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopabf.x | |- F/ x ps |
|
| opelopabf.y | |- F/ y ch |
||
| opelopabf.1 | |- A e. _V |
||
| opelopabf.2 | |- B e. _V |
||
| opelopabf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| opelopabf.4 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | opelopabf | |- ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabf.x | |- F/ x ps |
|
| 2 | opelopabf.y | |- F/ y ch |
|
| 3 | opelopabf.1 | |- A e. _V |
|
| 4 | opelopabf.2 | |- B e. _V |
|
| 5 | opelopabf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 6 | opelopabf.4 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 7 | opelopabsb | |- ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) |
|
| 8 | nfcv | |- F/_ x B |
|
| 9 | 8 1 | nfsbcw | |- F/ x [. B / y ]. ps |
| 10 | 5 | sbcbidv | |- ( x = A -> ( [. B / y ]. ph <-> [. B / y ]. ps ) ) |
| 11 | 9 10 | sbciegf | |- ( A e. _V -> ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. ps ) ) |
| 12 | 3 11 | ax-mp | |- ( [. A / x ]. [. B / y ]. ph <-> [. B / y ]. ps ) |
| 13 | 2 6 | sbciegf | |- ( B e. _V -> ( [. B / y ]. ps <-> ch ) ) |
| 14 | 4 13 | ax-mp | |- ( [. B / y ]. ps <-> ch ) |
| 15 | 7 12 14 | 3bitri | |- ( <. A , B >. e. { <. x , y >. | ph } <-> ch ) |