This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of opelopab uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopabf.x | ⊢ Ⅎ 𝑥 𝜓 | |
| opelopabf.y | ⊢ Ⅎ 𝑦 𝜒 | ||
| opelopabf.1 | ⊢ 𝐴 ∈ V | ||
| opelopabf.2 | ⊢ 𝐵 ∈ V | ||
| opelopabf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| opelopabf.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | opelopabf | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabf.x | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | opelopabf.y | ⊢ Ⅎ 𝑦 𝜒 | |
| 3 | opelopabf.1 | ⊢ 𝐴 ∈ V | |
| 4 | opelopabf.2 | ⊢ 𝐵 ∈ V | |
| 5 | opelopabf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | opelopabf.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 7 | opelopabsb | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ) | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 9 | 8 1 | nfsbcw | ⊢ Ⅎ 𝑥 [ 𝐵 / 𝑦 ] 𝜓 |
| 10 | 5 | sbcbidv | ⊢ ( 𝑥 = 𝐴 → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) ) |
| 11 | 9 10 | sbciegf | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) ) |
| 12 | 3 11 | ax-mp | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜓 ) |
| 13 | 2 6 | sbciegf | ⊢ ( 𝐵 ∈ V → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 14 | 4 13 | ax-mp | ⊢ ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) |
| 15 | 7 12 14 | 3bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜒 ) |