This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered-pair class abstractions (cont.)
opelopabf
Metamath Proof Explorer
Description: The law of concretion. Theorem 9.5 of Quine p. 61. This version of
opelopab uses bound-variable hypotheses in place of distinct variable
conditions. (Contributed by NM , 19-Dec-2008)
Ref
Expression
Hypotheses
opelopabf.x
⊢ Ⅎ x ψ
opelopabf.y
⊢ Ⅎ y χ
opelopabf.1
⊢ A ∈ V
opelopabf.2
⊢ B ∈ V
opelopabf.3
⊢ x = A → φ ↔ ψ
opelopabf.4
⊢ y = B → ψ ↔ χ
Assertion
opelopabf
⊢ A B ∈ x y | φ ↔ χ
Proof
Step
Hyp
Ref
Expression
1
opelopabf.x
⊢ Ⅎ x ψ
2
opelopabf.y
⊢ Ⅎ y χ
3
opelopabf.1
⊢ A ∈ V
4
opelopabf.2
⊢ B ∈ V
5
opelopabf.3
⊢ x = A → φ ↔ ψ
6
opelopabf.4
⊢ y = B → ψ ↔ χ
7
opelopabsb
⊢ A B ∈ x y | φ ↔ [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ
8
nfcv
⊢ Ⅎ _ x B
9
8 1
nfsbcw
⊢ Ⅎ x [ ˙ B / y ] ˙ ψ
10
5
sbcbidv
⊢ x = A → [ ˙ B / y ] ˙ φ ↔ [ ˙ B / y ] ˙ ψ
11
9 10
sbciegf
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ B / y ] ˙ ψ
12
3 11
ax-mp
⊢ [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ B / y ] ˙ ψ
13
2 6
sbciegf
⊢ B ∈ V → [ ˙ B / y ] ˙ ψ ↔ χ
14
4 13
ax-mp
⊢ [ ˙ B / y ] ˙ ψ ↔ χ
15
7 12 14
3bitri
⊢ A B ∈ x y | φ ↔ χ