This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996) (Revised by Mario Carneiro, 19-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssopab2 | |- ( A. x A. y ( ph -> ps ) -> { <. x , y >. | ph } C_ { <. x , y >. | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( ph -> ps ) -> ( ph -> ps ) ) |
|
| 2 | 1 | anim2d | |- ( ( ph -> ps ) -> ( ( z = <. x , y >. /\ ph ) -> ( z = <. x , y >. /\ ps ) ) ) |
| 3 | 2 | aleximi | |- ( A. y ( ph -> ps ) -> ( E. y ( z = <. x , y >. /\ ph ) -> E. y ( z = <. x , y >. /\ ps ) ) ) |
| 4 | 3 | aleximi | |- ( A. x A. y ( ph -> ps ) -> ( E. x E. y ( z = <. x , y >. /\ ph ) -> E. x E. y ( z = <. x , y >. /\ ps ) ) ) |
| 5 | 4 | ss2abdv | |- ( A. x A. y ( ph -> ps ) -> { z | E. x E. y ( z = <. x , y >. /\ ph ) } C_ { z | E. x E. y ( z = <. x , y >. /\ ps ) } ) |
| 6 | df-opab | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
|
| 7 | df-opab | |- { <. x , y >. | ps } = { z | E. x E. y ( z = <. x , y >. /\ ps ) } |
|
| 8 | 5 6 7 | 3sstr4g | |- ( A. x A. y ( ph -> ps ) -> { <. x , y >. | ph } C_ { <. x , y >. | ps } ) |