This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbvmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 9-Mar-1995) (Revised by GG, 23-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmow.1 | |- F/ y ph |
|
| cbvmow.2 | |- F/ x ps |
||
| cbvmow.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvmow | |- ( E* x ph <-> E* y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmow.1 | |- F/ y ph |
|
| 2 | cbvmow.2 | |- F/ x ps |
|
| 3 | cbvmow.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | nfv | |- F/ y x = z |
|
| 5 | 1 4 | nfim | |- F/ y ( ph -> x = z ) |
| 6 | nfv | |- F/ x y = z |
|
| 7 | 2 6 | nfim | |- F/ x ( ps -> y = z ) |
| 8 | equequ1 | |- ( x = y -> ( x = z <-> y = z ) ) |
|
| 9 | 3 8 | imbi12d | |- ( x = y -> ( ( ph -> x = z ) <-> ( ps -> y = z ) ) ) |
| 10 | 5 7 9 | cbvalv1 | |- ( A. x ( ph -> x = z ) <-> A. y ( ps -> y = z ) ) |
| 11 | 10 | exbii | |- ( E. z A. x ( ph -> x = z ) <-> E. z A. y ( ps -> y = z ) ) |
| 12 | df-mo | |- ( E* x ph <-> E. z A. x ( ph -> x = z ) ) |
|
| 13 | df-mo | |- ( E* y ps <-> E. z A. y ( ps -> y = z ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( E* x ph <-> E* y ps ) |