This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variant of onovuni with indexed unions. (Contributed by Eric Schmidt, 26-May-2009) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onovuni.1 | |- ( Lim y -> ( A F y ) = U_ x e. y ( A F x ) ) |
|
| onovuni.2 | |- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( A F x ) C_ ( A F y ) ) |
||
| Assertion | onoviun | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( A F U_ z e. K L ) = U_ z e. K ( A F L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onovuni.1 | |- ( Lim y -> ( A F y ) = U_ x e. y ( A F x ) ) |
|
| 2 | onovuni.2 | |- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( A F x ) C_ ( A F y ) ) |
|
| 3 | dfiun3g | |- ( A. z e. K L e. On -> U_ z e. K L = U. ran ( z e. K |-> L ) ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> U_ z e. K L = U. ran ( z e. K |-> L ) ) |
| 5 | 4 | oveq2d | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( A F U_ z e. K L ) = ( A F U. ran ( z e. K |-> L ) ) ) |
| 6 | simp1 | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> K e. T ) |
|
| 7 | mptexg | |- ( K e. T -> ( z e. K |-> L ) e. _V ) |
|
| 8 | rnexg | |- ( ( z e. K |-> L ) e. _V -> ran ( z e. K |-> L ) e. _V ) |
|
| 9 | 6 7 8 | 3syl | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ran ( z e. K |-> L ) e. _V ) |
| 10 | simp2 | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> A. z e. K L e. On ) |
|
| 11 | eqid | |- ( z e. K |-> L ) = ( z e. K |-> L ) |
|
| 12 | 11 | fmpt | |- ( A. z e. K L e. On <-> ( z e. K |-> L ) : K --> On ) |
| 13 | 10 12 | sylib | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( z e. K |-> L ) : K --> On ) |
| 14 | 13 | frnd | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ran ( z e. K |-> L ) C_ On ) |
| 15 | dmmptg | |- ( A. z e. K L e. On -> dom ( z e. K |-> L ) = K ) |
|
| 16 | 15 | 3ad2ant2 | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> dom ( z e. K |-> L ) = K ) |
| 17 | simp3 | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> K =/= (/) ) |
|
| 18 | 16 17 | eqnetrd | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> dom ( z e. K |-> L ) =/= (/) ) |
| 19 | dm0rn0 | |- ( dom ( z e. K |-> L ) = (/) <-> ran ( z e. K |-> L ) = (/) ) |
|
| 20 | 19 | necon3bii | |- ( dom ( z e. K |-> L ) =/= (/) <-> ran ( z e. K |-> L ) =/= (/) ) |
| 21 | 18 20 | sylib | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ran ( z e. K |-> L ) =/= (/) ) |
| 22 | 1 2 | onovuni | |- ( ( ran ( z e. K |-> L ) e. _V /\ ran ( z e. K |-> L ) C_ On /\ ran ( z e. K |-> L ) =/= (/) ) -> ( A F U. ran ( z e. K |-> L ) ) = U_ x e. ran ( z e. K |-> L ) ( A F x ) ) |
| 23 | 9 14 21 22 | syl3anc | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( A F U. ran ( z e. K |-> L ) ) = U_ x e. ran ( z e. K |-> L ) ( A F x ) ) |
| 24 | oveq2 | |- ( x = L -> ( A F x ) = ( A F L ) ) |
|
| 25 | 24 | eleq2d | |- ( x = L -> ( w e. ( A F x ) <-> w e. ( A F L ) ) ) |
| 26 | 11 25 | rexrnmptw | |- ( A. z e. K L e. On -> ( E. x e. ran ( z e. K |-> L ) w e. ( A F x ) <-> E. z e. K w e. ( A F L ) ) ) |
| 27 | 26 | 3ad2ant2 | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( E. x e. ran ( z e. K |-> L ) w e. ( A F x ) <-> E. z e. K w e. ( A F L ) ) ) |
| 28 | eliun | |- ( w e. U_ x e. ran ( z e. K |-> L ) ( A F x ) <-> E. x e. ran ( z e. K |-> L ) w e. ( A F x ) ) |
|
| 29 | eliun | |- ( w e. U_ z e. K ( A F L ) <-> E. z e. K w e. ( A F L ) ) |
|
| 30 | 27 28 29 | 3bitr4g | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( w e. U_ x e. ran ( z e. K |-> L ) ( A F x ) <-> w e. U_ z e. K ( A F L ) ) ) |
| 31 | 30 | eqrdv | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> U_ x e. ran ( z e. K |-> L ) ( A F x ) = U_ z e. K ( A F L ) ) |
| 32 | 5 23 31 | 3eqtrd | |- ( ( K e. T /\ A. z e. K L e. On /\ K =/= (/) ) -> ( A F U_ z e. K L ) = U_ z e. K ( A F L ) ) |