This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variant of onfununi for operations. (Contributed by Eric Schmidt, 26-May-2009) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onovuni.1 | |- ( Lim y -> ( A F y ) = U_ x e. y ( A F x ) ) |
|
| onovuni.2 | |- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( A F x ) C_ ( A F y ) ) |
||
| Assertion | onovuni | |- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( A F U. S ) = U_ x e. S ( A F x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onovuni.1 | |- ( Lim y -> ( A F y ) = U_ x e. y ( A F x ) ) |
|
| 2 | onovuni.2 | |- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( A F x ) C_ ( A F y ) ) |
|
| 3 | oveq2 | |- ( z = y -> ( A F z ) = ( A F y ) ) |
|
| 4 | eqid | |- ( z e. _V |-> ( A F z ) ) = ( z e. _V |-> ( A F z ) ) |
|
| 5 | ovex | |- ( A F y ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( y e. _V -> ( ( z e. _V |-> ( A F z ) ) ` y ) = ( A F y ) ) |
| 7 | 6 | elv | |- ( ( z e. _V |-> ( A F z ) ) ` y ) = ( A F y ) |
| 8 | oveq2 | |- ( z = x -> ( A F z ) = ( A F x ) ) |
|
| 9 | ovex | |- ( A F x ) e. _V |
|
| 10 | 8 4 9 | fvmpt | |- ( x e. _V -> ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) ) |
| 11 | 10 | elv | |- ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) |
| 12 | 11 | a1i | |- ( x e. y -> ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) ) |
| 13 | 12 | iuneq2i | |- U_ x e. y ( ( z e. _V |-> ( A F z ) ) ` x ) = U_ x e. y ( A F x ) |
| 14 | 1 7 13 | 3eqtr4g | |- ( Lim y -> ( ( z e. _V |-> ( A F z ) ) ` y ) = U_ x e. y ( ( z e. _V |-> ( A F z ) ) ` x ) ) |
| 15 | 2 11 7 | 3sstr4g | |- ( ( x e. On /\ y e. On /\ x C_ y ) -> ( ( z e. _V |-> ( A F z ) ) ` x ) C_ ( ( z e. _V |-> ( A F z ) ) ` y ) ) |
| 16 | 14 15 | onfununi | |- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = U_ x e. S ( ( z e. _V |-> ( A F z ) ) ` x ) ) |
| 17 | uniexg | |- ( S e. T -> U. S e. _V ) |
|
| 18 | oveq2 | |- ( z = U. S -> ( A F z ) = ( A F U. S ) ) |
|
| 19 | ovex | |- ( A F U. S ) e. _V |
|
| 20 | 18 4 19 | fvmpt | |- ( U. S e. _V -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = ( A F U. S ) ) |
| 21 | 17 20 | syl | |- ( S e. T -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = ( A F U. S ) ) |
| 22 | 21 | 3ad2ant1 | |- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( ( z e. _V |-> ( A F z ) ) ` U. S ) = ( A F U. S ) ) |
| 23 | 11 | a1i | |- ( x e. S -> ( ( z e. _V |-> ( A F z ) ) ` x ) = ( A F x ) ) |
| 24 | 23 | iuneq2i | |- U_ x e. S ( ( z e. _V |-> ( A F z ) ) ` x ) = U_ x e. S ( A F x ) |
| 25 | 24 | a1i | |- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> U_ x e. S ( ( z e. _V |-> ( A F z ) ) ` x ) = U_ x e. S ( A F x ) ) |
| 26 | 16 22 25 | 3eqtr3d | |- ( ( S e. T /\ S C_ On /\ S =/= (/) ) -> ( A F U. S ) = U_ x e. S ( A F x ) ) |