This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbin | |- [_ A / x ]_ ( B i^i C ) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( y = A -> [_ y / x ]_ ( B i^i C ) = [_ A / x ]_ ( B i^i C ) ) |
|
| 2 | csbeq1 | |- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
|
| 3 | csbeq1 | |- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
|
| 4 | 2 3 | ineq12d | |- ( y = A -> ( [_ y / x ]_ B i^i [_ y / x ]_ C ) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) ) |
| 5 | 1 4 | eqeq12d | |- ( y = A -> ( [_ y / x ]_ ( B i^i C ) = ( [_ y / x ]_ B i^i [_ y / x ]_ C ) <-> [_ A / x ]_ ( B i^i C ) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) ) ) |
| 6 | vex | |- y e. _V |
|
| 7 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 8 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 9 | 7 8 | nfin | |- F/_ x ( [_ y / x ]_ B i^i [_ y / x ]_ C ) |
| 10 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 11 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 12 | 10 11 | ineq12d | |- ( x = y -> ( B i^i C ) = ( [_ y / x ]_ B i^i [_ y / x ]_ C ) ) |
| 13 | 6 9 12 | csbief | |- [_ y / x ]_ ( B i^i C ) = ( [_ y / x ]_ B i^i [_ y / x ]_ C ) |
| 14 | 5 13 | vtoclg | |- ( A e. _V -> [_ A / x ]_ ( B i^i C ) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) ) |
| 15 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ ( B i^i C ) = (/) ) |
|
| 16 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
|
| 17 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
|
| 18 | 16 17 | ineq12d | |- ( -. A e. _V -> ( [_ A / x ]_ B i^i [_ A / x ]_ C ) = ( (/) i^i (/) ) ) |
| 19 | in0 | |- ( (/) i^i (/) ) = (/) |
|
| 20 | 18 19 | eqtr2di | |- ( -. A e. _V -> (/) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) ) |
| 21 | 15 20 | eqtrd | |- ( -. A e. _V -> [_ A / x ]_ ( B i^i C ) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) ) |
| 22 | 14 21 | pm2.61i | |- [_ A / x ]_ ( B i^i C ) = ( [_ A / x ]_ B i^i [_ A / x ]_ C ) |