This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbceqg | |- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 | |- ( z = A -> ( [ z / x ] B = C <-> [. A / x ]. B = C ) ) |
|
| 2 | dfsbcq2 | |- ( z = A -> ( [ z / x ] y e. B <-> [. A / x ]. y e. B ) ) |
|
| 3 | 2 | abbidv | |- ( z = A -> { y | [ z / x ] y e. B } = { y | [. A / x ]. y e. B } ) |
| 4 | dfsbcq2 | |- ( z = A -> ( [ z / x ] y e. C <-> [. A / x ]. y e. C ) ) |
|
| 5 | 4 | abbidv | |- ( z = A -> { y | [ z / x ] y e. C } = { y | [. A / x ]. y e. C } ) |
| 6 | 3 5 | eqeq12d | |- ( z = A -> ( { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } <-> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) ) |
| 7 | nfs1v | |- F/ x [ z / x ] y e. B |
|
| 8 | 7 | nfab | |- F/_ x { y | [ z / x ] y e. B } |
| 9 | nfs1v | |- F/ x [ z / x ] y e. C |
|
| 10 | 9 | nfab | |- F/_ x { y | [ z / x ] y e. C } |
| 11 | 8 10 | nfeq | |- F/ x { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } |
| 12 | sbab | |- ( x = z -> B = { y | [ z / x ] y e. B } ) |
|
| 13 | sbab | |- ( x = z -> C = { y | [ z / x ] y e. C } ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = z -> ( B = C <-> { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } ) ) |
| 15 | 11 14 | sbiev | |- ( [ z / x ] B = C <-> { y | [ z / x ] y e. B } = { y | [ z / x ] y e. C } ) |
| 16 | 1 6 15 | vtoclbg | |- ( A e. V -> ( [. A / x ]. B = C <-> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) ) |
| 17 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
| 18 | df-csb | |- [_ A / x ]_ C = { y | [. A / x ]. y e. C } |
|
| 19 | 17 18 | eqeq12i | |- ( [_ A / x ]_ B = [_ A / x ]_ C <-> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) |
| 20 | 16 19 | bitr4di | |- ( A e. V -> ( [. A / x ]. B = C <-> [_ A / x ]_ B = [_ A / x ]_ C ) ) |