This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneqmin | |- ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B <-> ( A e. B /\ A. x e. A -. x e. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint | |- ( ( B C_ On /\ B =/= (/) ) -> |^| B e. B ) |
|
| 2 | eleq1 | |- ( A = |^| B -> ( A e. B <-> |^| B e. B ) ) |
|
| 3 | 1 2 | syl5ibrcom | |- ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B -> A e. B ) ) |
| 4 | eleq2 | |- ( A = |^| B -> ( x e. A <-> x e. |^| B ) ) |
|
| 5 | 4 | biimpd | |- ( A = |^| B -> ( x e. A -> x e. |^| B ) ) |
| 6 | onnmin | |- ( ( B C_ On /\ x e. B ) -> -. x e. |^| B ) |
|
| 7 | 6 | ex | |- ( B C_ On -> ( x e. B -> -. x e. |^| B ) ) |
| 8 | 7 | con2d | |- ( B C_ On -> ( x e. |^| B -> -. x e. B ) ) |
| 9 | 5 8 | syl9r | |- ( B C_ On -> ( A = |^| B -> ( x e. A -> -. x e. B ) ) ) |
| 10 | 9 | ralrimdv | |- ( B C_ On -> ( A = |^| B -> A. x e. A -. x e. B ) ) |
| 11 | 10 | adantr | |- ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B -> A. x e. A -. x e. B ) ) |
| 12 | 3 11 | jcad | |- ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B -> ( A e. B /\ A. x e. A -. x e. B ) ) ) |
| 13 | oneqmini | |- ( B C_ On -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A = |^| B ) ) |
|
| 14 | 13 | adantr | |- ( ( B C_ On /\ B =/= (/) ) -> ( ( A e. B /\ A. x e. A -. x e. B ) -> A = |^| B ) ) |
| 15 | 12 14 | impbid | |- ( ( B C_ On /\ B =/= (/) ) -> ( A = |^| B <-> ( A e. B /\ A. x e. A -. x e. B ) ) ) |