This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to show that an ordinal number equals the minimum of a nonempty collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneqmin | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∩ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onint | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ∩ 𝐵 ∈ 𝐵 ) | |
| 2 | eleq1 | ⊢ ( 𝐴 = ∩ 𝐵 → ( 𝐴 ∈ 𝐵 ↔ ∩ 𝐵 ∈ 𝐵 ) ) | |
| 3 | 1 2 | syl5ibrcom | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∩ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| 4 | eleq2 | ⊢ ( 𝐴 = ∩ 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∩ 𝐵 ) ) | |
| 5 | 4 | biimpd | ⊢ ( 𝐴 = ∩ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∩ 𝐵 ) ) |
| 6 | onnmin | ⊢ ( ( 𝐵 ⊆ On ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ∩ 𝐵 ) | |
| 7 | 6 | ex | ⊢ ( 𝐵 ⊆ On → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ ∩ 𝐵 ) ) |
| 8 | 7 | con2d | ⊢ ( 𝐵 ⊆ On → ( 𝑥 ∈ ∩ 𝐵 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 9 | 5 8 | syl9r | ⊢ ( 𝐵 ⊆ On → ( 𝐴 = ∩ 𝐵 → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 10 | 9 | ralrimdv | ⊢ ( 𝐵 ⊆ On → ( 𝐴 = ∩ 𝐵 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∩ 𝐵 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 | 3 11 | jcad | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∩ 𝐵 → ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 13 | oneqmini | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 = ∩ 𝐵 ) ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 = ∩ 𝐵 ) ) |
| 15 | 12 14 | impbid | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∩ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) ) |