This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication with successor. Theorem 4J(A2) of Enderton p. 80. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onmsuc | |- ( ( A e. On /\ B e. _om ) -> ( A .o suc B ) = ( ( A .o B ) +o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 | |- ( B e. _om -> suc B e. _om ) |
|
| 2 | nnon | |- ( suc B e. _om -> suc B e. On ) |
|
| 3 | 1 2 | syl | |- ( B e. _om -> suc B e. On ) |
| 4 | omv | |- ( ( A e. On /\ suc B e. On ) -> ( A .o suc B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A e. On /\ B e. _om ) -> ( A .o suc B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) ) |
| 6 | 1 | adantl | |- ( ( A e. On /\ B e. _om ) -> suc B e. _om ) |
| 7 | 6 | fvresd | |- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` suc B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) ) |
| 8 | 5 7 | eqtr4d | |- ( ( A e. On /\ B e. _om ) -> ( A .o suc B ) = ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` suc B ) ) |
| 9 | ovex | |- ( A .o B ) e. _V |
|
| 10 | oveq1 | |- ( x = ( A .o B ) -> ( x +o A ) = ( ( A .o B ) +o A ) ) |
|
| 11 | eqid | |- ( x e. _V |-> ( x +o A ) ) = ( x e. _V |-> ( x +o A ) ) |
|
| 12 | ovex | |- ( ( A .o B ) +o A ) e. _V |
|
| 13 | 10 11 12 | fvmpt | |- ( ( A .o B ) e. _V -> ( ( x e. _V |-> ( x +o A ) ) ` ( A .o B ) ) = ( ( A .o B ) +o A ) ) |
| 14 | 9 13 | ax-mp | |- ( ( x e. _V |-> ( x +o A ) ) ` ( A .o B ) ) = ( ( A .o B ) +o A ) |
| 15 | nnon | |- ( B e. _om -> B e. On ) |
|
| 16 | omv | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
|
| 17 | 15 16 | sylan2 | |- ( ( A e. On /\ B e. _om ) -> ( A .o B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
| 18 | fvres | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
|
| 19 | 18 | adantl | |- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
| 20 | 17 19 | eqtr4d | |- ( ( A e. On /\ B e. _om ) -> ( A .o B ) = ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) ) |
| 21 | 20 | fveq2d | |- ( ( A e. On /\ B e. _om ) -> ( ( x e. _V |-> ( x +o A ) ) ` ( A .o B ) ) = ( ( x e. _V |-> ( x +o A ) ) ` ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) ) ) |
| 22 | 14 21 | eqtr3id | |- ( ( A e. On /\ B e. _om ) -> ( ( A .o B ) +o A ) = ( ( x e. _V |-> ( x +o A ) ) ` ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) ) ) |
| 23 | frsuc | |- ( B e. _om -> ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` suc B ) = ( ( x e. _V |-> ( x +o A ) ) ` ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) ) ) |
|
| 24 | 23 | adantl | |- ( ( A e. On /\ B e. _om ) -> ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` suc B ) = ( ( x e. _V |-> ( x +o A ) ) ` ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` B ) ) ) |
| 25 | 22 24 | eqtr4d | |- ( ( A e. On /\ B e. _om ) -> ( ( A .o B ) +o A ) = ( ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) |` _om ) ` suc B ) ) |
| 26 | 8 25 | eqtr4d | |- ( ( A e. On /\ B e. _om ) -> ( A .o suc B ) = ( ( A .o B ) +o A ) ) |