This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal addition. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oav | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 | |- ( y = A -> rec ( ( x e. _V |-> suc x ) , y ) = rec ( ( x e. _V |-> suc x ) , A ) ) |
|
| 2 | 1 | fveq1d | |- ( y = A -> ( rec ( ( x e. _V |-> suc x ) , y ) ` z ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` z ) ) |
| 3 | fveq2 | |- ( z = B -> ( rec ( ( x e. _V |-> suc x ) , A ) ` z ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |
|
| 4 | df-oadd | |- +o = ( y e. On , z e. On |-> ( rec ( ( x e. _V |-> suc x ) , y ) ` z ) ) |
|
| 5 | fvex | |- ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) e. _V |
|
| 6 | 2 3 4 5 | ovmpo | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( rec ( ( x e. _V |-> suc x ) , A ) ` B ) ) |