This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its product with another. Lemma 3.12 of Schloeder p. 9. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omword2 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( B .o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om1r | |- ( A e. On -> ( 1o .o A ) = A ) |
|
| 2 | 1 | ad2antrr | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o .o A ) = A ) |
| 3 | eloni | |- ( B e. On -> Ord B ) |
|
| 4 | ordgt0ge1 | |- ( Ord B -> ( (/) e. B <-> 1o C_ B ) ) |
|
| 5 | 4 | biimpa | |- ( ( Ord B /\ (/) e. B ) -> 1o C_ B ) |
| 6 | 3 5 | sylan | |- ( ( B e. On /\ (/) e. B ) -> 1o C_ B ) |
| 7 | 6 | adantll | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> 1o C_ B ) |
| 8 | 1on | |- 1o e. On |
|
| 9 | omwordri | |- ( ( 1o e. On /\ B e. On /\ A e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
|
| 10 | 8 9 | mp3an1 | |- ( ( B e. On /\ A e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 11 | 10 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 12 | 11 | adantr | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o C_ B -> ( 1o .o A ) C_ ( B .o A ) ) ) |
| 13 | 7 12 | mpd | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> ( 1o .o A ) C_ ( B .o A ) ) |
| 14 | 2 13 | eqsstrrd | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( B .o A ) ) |