This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of Schloeder p. 8. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omword1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ||
| 2 | ordgt0ge1 | ||
| 3 | 1 2 | syl | |
| 4 | 3 | adantl | |
| 5 | 1on | ||
| 6 | omwordi | ||
| 7 | 5 6 | mp3an1 | |
| 8 | 7 | ancoms | |
| 9 | om1 | ||
| 10 | 9 | adantr | |
| 11 | 10 | sseq1d | |
| 12 | 8 11 | sylibd | |
| 13 | 4 12 | sylbid | |
| 14 | 13 | imp |