This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omv | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( y = A -> ( x +o y ) = ( x +o A ) ) |
|
| 2 | 1 | mpteq2dv | |- ( y = A -> ( x e. _V |-> ( x +o y ) ) = ( x e. _V |-> ( x +o A ) ) ) |
| 3 | rdgeq1 | |- ( ( x e. _V |-> ( x +o y ) ) = ( x e. _V |-> ( x +o A ) ) -> rec ( ( x e. _V |-> ( x +o y ) ) , (/) ) = rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ) |
|
| 4 | 2 3 | syl | |- ( y = A -> rec ( ( x e. _V |-> ( x +o y ) ) , (/) ) = rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ) |
| 5 | 4 | fveq1d | |- ( y = A -> ( rec ( ( x e. _V |-> ( x +o y ) ) , (/) ) ` z ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` z ) ) |
| 6 | fveq2 | |- ( z = B -> ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` z ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
|
| 7 | df-omul | |- .o = ( y e. On , z e. On |-> ( rec ( ( x e. _V |-> ( x +o y ) ) , (/) ) ` z ) ) |
|
| 8 | fvex | |- ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) e. _V |
|
| 9 | 5 6 7 8 | ovmpo | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |