This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-omul | |- .o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | comu | |- .o |
|
| 1 | vx | |- x |
|
| 2 | con0 | |- On |
|
| 3 | vy | |- y |
|
| 4 | vz | |- z |
|
| 5 | cvv | |- _V |
|
| 6 | 4 | cv | |- z |
| 7 | coa | |- +o |
|
| 8 | 1 | cv | |- x |
| 9 | 6 8 7 | co | |- ( z +o x ) |
| 10 | 4 5 9 | cmpt | |- ( z e. _V |-> ( z +o x ) ) |
| 11 | c0 | |- (/) |
|
| 12 | 10 11 | crdg | |- rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) |
| 13 | 3 | cv | |- y |
| 14 | 13 12 | cfv | |- ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) |
| 15 | 1 3 2 2 14 | cmpo | |- ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) ) |
| 16 | 0 15 | wceq | |- .o = ( x e. On , y e. On |-> ( rec ( ( z e. _V |-> ( z +o x ) ) , (/) ) ` y ) ) |