This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgeq1 | |- ( F = G -> rec ( F , A ) = rec ( G , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( F = G -> ( F ` ( g ` U. dom g ) ) = ( G ` ( g ` U. dom g ) ) ) |
|
| 2 | 1 | ifeq2d | |- ( F = G -> if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) = if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) |
| 3 | 2 | ifeq2d | |- ( F = G -> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) = if ( g = (/) , A , if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) ) |
| 4 | 3 | mpteq2dv | |- ( F = G -> ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) ) ) |
| 5 | recseq | |- ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) ) -> recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( F = G -> recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) ) ) ) |
| 7 | df-rdg | |- rec ( F , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 8 | df-rdg | |- rec ( G , A ) = recs ( ( g e. _V |-> if ( g = (/) , A , if ( Lim dom g , U. ran g , ( G ` ( g ` U. dom g ) ) ) ) ) ) |
|
| 9 | 6 7 8 | 3eqtr4g | |- ( F = G -> rec ( F , A ) = rec ( G , A ) ) |