This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omv | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 +o 𝑦 ) = ( 𝑥 +o 𝐴 ) ) | |
| 2 | 1 | mpteq2dv | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) ) |
| 3 | rdgeq1 | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑦 = 𝐴 → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝑦 = 𝐴 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝑧 ) ) |
| 6 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) | |
| 7 | df-omul | ⊢ ·o = ( 𝑦 ∈ On , 𝑧 ∈ On ↦ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝑦 ) ) , ∅ ) ‘ 𝑧 ) ) | |
| 8 | fvex | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ∈ V | |
| 9 | 5 6 7 8 | ovmpo | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ·o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +o 𝐴 ) ) , ∅ ) ‘ 𝐵 ) ) |