This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omun | |- ( ( A e. _om /\ B e. _om ) -> ( A u. B ) e. _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) |
|
| 2 | eleq1a | |- ( B e. _om -> ( ( A u. B ) = B -> ( A u. B ) e. _om ) ) |
|
| 3 | 2 | adantl | |- ( ( A e. _om /\ B e. _om ) -> ( ( A u. B ) = B -> ( A u. B ) e. _om ) ) |
| 4 | 1 3 | biimtrid | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A u. B ) e. _om ) ) |
| 5 | ssequn2 | |- ( B C_ A <-> ( A u. B ) = A ) |
|
| 6 | eleq1a | |- ( A e. _om -> ( ( A u. B ) = A -> ( A u. B ) e. _om ) ) |
|
| 7 | 6 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( ( A u. B ) = A -> ( A u. B ) e. _om ) ) |
| 8 | 5 7 | biimtrid | |- ( ( A e. _om /\ B e. _om ) -> ( B C_ A -> ( A u. B ) e. _om ) ) |
| 9 | nnord | |- ( A e. _om -> Ord A ) |
|
| 10 | nnord | |- ( B e. _om -> Ord B ) |
|
| 11 | ordtri2or2 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B \/ B C_ A ) ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B \/ B C_ A ) ) |
| 13 | 4 8 12 | mpjaod | |- ( ( A e. _om /\ B e. _om ) -> ( A u. B ) e. _om ) |