This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeo | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> -. 2 || ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
|
| 2 | 2z | |- 2 e. ZZ |
|
| 3 | divides | |- ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 || B <-> E. b e. ZZ ( b x. 2 ) = B ) ) |
|
| 4 | 2 3 | mpan | |- ( B e. ZZ -> ( 2 || B <-> E. b e. ZZ ( b x. 2 ) = B ) ) |
| 5 | 1 4 | bi2anan9 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) ) ) |
| 6 | reeanv | |- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) ) |
|
| 7 | zsubcl | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( a - b ) e. ZZ ) |
|
| 8 | zcn | |- ( a e. ZZ -> a e. CC ) |
|
| 9 | zcn | |- ( b e. ZZ -> b e. CC ) |
|
| 10 | 2cn | |- 2 e. CC |
|
| 11 | subdi | |- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
|
| 12 | 10 11 | mp3an1 | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 13 | 12 | oveq1d | |- ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) |
| 14 | mulcl | |- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
|
| 15 | 10 14 | mpan | |- ( a e. CC -> ( 2 x. a ) e. CC ) |
| 16 | mulcl | |- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
|
| 17 | 10 16 | mpan | |- ( b e. CC -> ( 2 x. b ) e. CC ) |
| 18 | ax-1cn | |- 1 e. CC |
|
| 19 | addsub | |- ( ( ( 2 x. a ) e. CC /\ 1 e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) |
|
| 20 | 18 19 | mp3an2 | |- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) |
| 21 | 15 17 20 | syl2an | |- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) - ( 2 x. b ) ) + 1 ) ) |
| 22 | mulcom | |- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) = ( b x. 2 ) ) |
|
| 23 | 10 22 | mpan | |- ( b e. CC -> ( 2 x. b ) = ( b x. 2 ) ) |
| 24 | 23 | oveq2d | |- ( b e. CC -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) |
| 25 | 24 | adantl | |- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( 2 x. b ) ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) |
| 26 | 13 21 25 | 3eqtr2d | |- ( ( a e. CC /\ b e. CC ) -> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) |
| 27 | 8 9 26 | syl2an | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) |
| 28 | oveq2 | |- ( c = ( a - b ) -> ( 2 x. c ) = ( 2 x. ( a - b ) ) ) |
|
| 29 | 28 | oveq1d | |- ( c = ( a - b ) -> ( ( 2 x. c ) + 1 ) = ( ( 2 x. ( a - b ) ) + 1 ) ) |
| 30 | 29 | eqeq1d | |- ( c = ( a - b ) -> ( ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) <-> ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) ) |
| 31 | 30 | rspcev | |- ( ( ( a - b ) e. ZZ /\ ( ( 2 x. ( a - b ) ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) |
| 32 | 7 27 31 | syl2anc | |- ( ( a e. ZZ /\ b e. ZZ ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) ) |
| 33 | oveq12 | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) = ( A - B ) ) |
|
| 34 | 33 | eqeq2d | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) <-> ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) |
| 35 | 34 | rexbidv | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> ( E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( ( ( 2 x. a ) + 1 ) - ( b x. 2 ) ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) |
| 36 | 32 35 | syl5ibcom | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) |
| 37 | 36 | rexlimivv | |- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) |
| 38 | 6 37 | sylbir | |- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( b x. 2 ) = B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) |
| 39 | 5 38 | biimtrdi | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ 2 || B ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) |
| 40 | 39 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ 2 || B ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) |
| 41 | 40 | an4s | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) |
| 42 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 43 | 42 | ad2ant2r | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> ( A - B ) e. ZZ ) |
| 44 | odd2np1 | |- ( ( A - B ) e. ZZ -> ( -. 2 || ( A - B ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> ( -. 2 || ( A - B ) <-> E. c e. ZZ ( ( 2 x. c ) + 1 ) = ( A - B ) ) ) |
| 46 | 41 45 | mpbird | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ 2 || B ) ) -> -. 2 || ( A - B ) ) |